# Задача №7-Е1. «Взвешивание» коэффициента

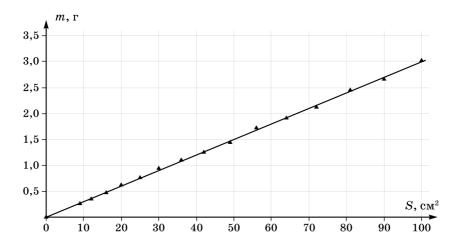
Из листа картона вырезаем несколько квадратов (прямоугольников) с известными сторонами, вычисляем их площади, взвешиваем на весах и определяем массы.

Возможный вариант реализации: нарисуем квадрат со стороной 10 см, определяем массу, вдоль одной стороны отрезаем полоску шириной 1 см, получаем прямоугольник 10 см\*9 см, взвешиваем, вдоль другой стороны отрезаем полоску шириной 1 см, получаем квадрат со стороной 9 см, взвешиваем, и т.д.

| a,cm | <i>b</i> ,см | $S = ab, cm^2$ | m,г  |
|------|--------------|----------------|------|
| 10   | 10           | 100            | 3,02 |
| 10   | 9            | 90             | 2,66 |
| 9    | 9            | 81             | 2,45 |
| 9    | 8            | 72             | 2,12 |
| 8    | 8            | 64             | 1,91 |
| 8    | 7            | 56             | 1,72 |
| 7    | 7            | 49             | 1,44 |
| 7    | 6            | 42             | 1,25 |
| 6    | 6            | 36             | 1,10 |
| 6    | 5            | 30             | 0,94 |
| 5    | 5            | 25             | 0,76 |
| 5    | 4            | 20             | 0,62 |
| 4    | 4            | 16             | 0,47 |
| 4    | 3            | 12             | 0,35 |
| 3    | 3            | 9              | 0,26 |

Масса фигур связана с их площадью следующим соотношением:  $m=\rho_S S$ . Тогда с помощью углового коэффициента наклона графика найдем поверхностную плотность картона:

$$\rho_S = \frac{\Delta m}{\Delta S} = \frac{3.0 - 0.3}{100 - 9} = 0.03 \frac{\Gamma}{\text{cm}^2} = 0.30 \frac{\text{K}\Gamma}{\text{M}^2}$$



Для того, чтобы определить объёмную плотность картона, нужно определить толщину листа h. Сделать это можно методом рядов. Из остатков картона нарежем куски, сложим их друг на друга, хорошо прижмём к столу для устранения воздушных зазоров и определим высоту получившегося столбика. Толщина листа оказывается равной

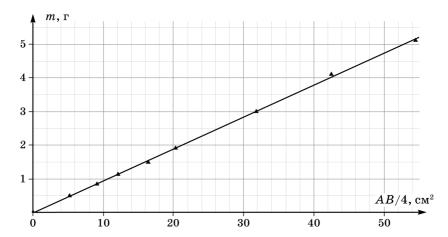
$$h = 0.35 \text{ mm}$$

Объемная плотность  $\rho_V$  равна

$$\rho_V = \frac{\rho_S}{h} = \frac{0.03}{0.035} = 0.86 \frac{\Gamma}{\text{cm}^3} = 860 \frac{\text{KF}}{\text{m}^3}$$

На листе картона, используя метод, описанный в условии, рисуем несколько эллипсов. Измеряем большую и малую оси эллипса, производим измерения массы. Представляется разумным все эллипсы рисовать один внутри другого, используя проведённые перпендикулярные линии для измерения длин осей. Сначала вырезается самый большой эллипс, измеряем  $A,\ B$  и  $m,\$ затем вырезаем эллипс поменьше и т.д.

| А,см | В,см | $\frac{AB}{4}$ , cm <sup>2</sup> | m,г  |
|------|------|----------------------------------|------|
| 15,8 | 13,8 | 54,5                             | 5,12 |
| 14,3 | 11,9 | 42,5                             | 4,11 |
| 12,7 | 10,0 | 31,8                             | 3,00 |
| 10,8 | 7,5  | 20,3                             | 1,91 |
| 10,4 | 6,3  | 16,4                             | 1,49 |
| 8,8  | 5,5  | 12,1                             | 1,13 |
| 7,4  | 4,9  | 9,1                              | 0,84 |
| 6,1  | 3,4  | 5,2                              | 0,49 |



Масса эллипса m связана с его площадью S следующим образом  $m=\rho_S S$ , а так как площадь S определяется как  $S=\frac{1}{4}kAB$ , то масса равна  $m=\rho_S k\frac{AB}{4}=C\frac{AB}{4}$  Угловой коэффициент наклона графика равен

$$C = \frac{\Delta m}{\Delta(\frac{AB}{I})} = \frac{5.1 - 0.5}{55 - 5} = 0.092 \frac{\Gamma}{\text{cm}^2} = 0.92 \frac{\text{K}\Gamma}{\text{m}^2}$$

Определяем коэффициент k:

$$C = \rho_S k$$

$$k = \frac{C}{\rho_S} = \frac{0.092}{0.03} \approx 3.1$$

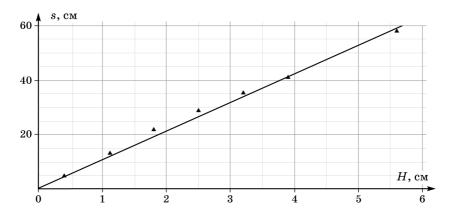
Теоретическое значение коэффициента k - знаменитое иррациональное число "пи"  $\pi=3,14...$ 

### Задача №7-Е2. Трение качения

Методом прокатывания определяем диаметр шарика  $D=2,\!47$  см. Радиус шарика равен  $R=\frac{D}{2}=1,\!24$  см.

Скатывая шарик с разных высот, снимаем зависимость s(H). С каждой высоты шарик скатываем несколько раз, в таблице приведено среднее значение s.

| N | Н, см | s, cm |
|---|-------|-------|
| 1 | 0,4   | 4,8   |
| 2 | 1,1   | 13,0  |
| 3 | 1,8   | 21,8  |
| 4 | 2,5   | 28,8  |
| 5 | 3,2   | 35,3  |
| 6 | 3,9   | 41,0  |
| 7 | 5,6   | 58,0  |



По графику определим угловой коэффициент наклона

$$\frac{\Delta s}{\Delta H} = \frac{59}{5,6} \approx 10,\!5$$

Так как угловой коэффициент наклона равен  $\frac{\Delta s}{\Delta H} = \frac{R}{k},$  то коэффициент k равен

$$k = rac{R}{rac{\Delta s}{\Delta H}} = rac{1,24}{10,5} pprox 0,12$$
 см

# Задача №8-Е1. Сферический сегмент

После Олимпийских игр в австралийском Сиднее, прошедших в 2000 году, вес мячика увеличили до 2,7 г, а диаметр – до 40 мм. Изменение характеристик было продиктовано необходимостью увеличить устойчивость шара в полете и снизить темп игры для большей зрелищности. Но в характеристики шариков, продающихся в магазинах, могут отличаться от международных стандартов.

#### Метод № 1

Для определения радиуса шарика используем два бруска и миллиметровую бумагу. Зажимаем шарик между брусками в разных местах, где можно измерить его диаметр. За параллельностью брусков следим по миллиметровой бумаге. Проводим измерение несколько раз и находим среднее значение диаметра, а затем определяем радиус по формуле:  $R=0.5D_{\rm cp}$ .

| <b>№</b> п/п | D, mm | $D_{\mathrm{cp}}$ мм | R, mm |
|--------------|-------|----------------------|-------|
| 1            | 39    |                      |       |
| 2            | 39    | 39                   | 19,5  |
| 3            | 39    |                      |       |

#### Метод № 2

Делаем на шарике отметку карандашом и с помощью линейки прокатываем его, считая обороты. Измеряем путь шарика по поверхности стола и определяем радиус по формуле:

$$R = \frac{L_{\rm cp}}{2\pi n}.$$

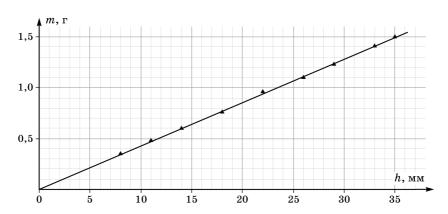
| № п/п | n | L, mm | $L_{\mathrm{cp}}$ , mm | R, mm |
|-------|---|-------|------------------------|-------|
| 1     | 3 | 368   | 0.00                   | 102   |
| 2     | 3 | 370   | 368                    | 19,5  |
| 3     | 3 | 366   |                        |       |

R = 19.5 mm.

Измеряем массу сегмента на весах. Для определения высоты сегмента опять используем два бруска и миллиметровую бумагу. Зажимаем сегмент между брусками. За параллельностью брусков следим по миллиметровой бумаге. Аккуратно срезаем полоску с сегмента ножницами, уменьшая его высоту. Следим за аккуратностью среза на плоскости стола.

| №              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|----------------|------|------|------|------|------|------|------|------|------|
| $\Pi/\Pi$      |      |      |      |      |      |      |      |      |      |
| $m$ , $\Gamma$ | 1,50 | 1,41 | 1,23 | 1,10 | 0,96 | 0,76 | 0,60 | 0,48 | 0,35 |
| h, mm          | 35   | 33   | 29   | 26   | 22   | 18   | 14   | 11   | 8    |

Строим график зависимости массы сегмента от его высоты.



T.к. точки хорошо ложатся на прямую, проходящую через начало координат, делается вывод о прямой пропорциональности и равенстве n единице. Проводим среднюю прямую через начало координат и определяем угловой коэффициент:

$$k = \frac{1.2}{28} = 0.043 \frac{\Gamma}{MM}$$

 $n=1; \ k=0.043 \ \frac{\Gamma}{MM}.$ 

#### Метод № 1

Массу целого шарика можно найти на графике, используя экстраполяцию до диаметра.

#### Метод № 2

Массу целого шарика можно найти по формуле:

$$m_0 = kD = 0.043 \cdot 39 = 1.68$$
 г.

 $m_0 = 1,68$  г.

Поверхностную плотность легко найти по формуле:

$$\rho_S = \frac{m_0}{4\pi R^2} = \frac{1,68 \cdot 10^{-3} \text{ Kg}}{4 \cdot 3,14 \cdot (19,5 \cdot 10^{-3} \text{ M})^2} \approx 0,35 \frac{\text{Kg}}{\text{M}^2}$$

. Для определения объёмной плотности необходимо измерить толщину стенки шарика. Для этого используются обрезки шарика. Они выкладываются в ряд и зажимаются брусками. Толщину стенки определяем методом рядов:

$$l_1 = \frac{l}{N}$$

. Тогда объёмная плотность:

$$\begin{split} \rho_V &= \frac{m_0}{4\pi R^2 l_1} = \frac{m_0 N}{4\pi R^2 l} = \frac{1,68 \cdot 10^{-3} \text{ kg} \cdot 13}{4 \cdot 3,14 \cdot \left(19,5 \cdot 10^{-3} \text{ m}\right)^2 \cdot 5 \cdot 10^{-3} \text{m}} \approx 0,92 \, \frac{\text{kg}}{\text{m}^3}. \\ \rho_S &= 0,35 \, \frac{\text{kg}}{\text{m}^2}; \, \, \rho_V = 0,92 \, \frac{\text{kg}}{\text{m}^3}. \end{split}$$

### Задача №8-Е2. Труба-дело!

Включим весы. Поставим на них емкость с водой. Обнулим весы (кнопка «TARE»). Погрузим часть трубки в емкость с водой. Снимем зависимость показаний весов от доли погруженной части трубки (метод гидростатического взвешивания). То же самое сделаем с трубкой, у которой погружаемый конец закрыт скотчем. Показания весов сразу пересчитываем в погружаемый объем, деля показания весов на плотность воды



| х, частьтрубки | $m_{\text{закр}}^{\text{Apx}}, \Gamma/V_{\text{откр}}, \text{ cm}^3$ | $m_{\text{откр}}^{\text{Apx}}, \Gamma/V_{\text{откр}}, \text{ cm}^3$ |
|----------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|                |                                                                      |                                                                      |
| $\frac{1}{32}$ | 10                                                                   | 18                                                                   |
| $\frac{2}{32}$ | 19                                                                   | 33                                                                   |
| $\frac{3}{32}$ | 28                                                                   | 49                                                                   |
| $\frac{4}{32}$ | 38                                                                   | 66                                                                   |
| $\frac{5}{32}$ | 47                                                                   | 82                                                                   |
| $\frac{6}{32}$ | 56                                                                   | 98                                                                   |
| $\frac{7}{32}$ | 66                                                                   | 115                                                                  |
| $\frac{8}{32}$ | 75                                                                   | 131                                                                  |

В авторской установке трубка была разделена на 32 части. Для открытой трубки объем погруженной части  $V_{\text{откр}}(x)=\frac{1}{32}Vx$ , где x - количество делений, погруженных в жидкость. . Угловой коэффициент  $k_{\text{откр}}=\frac{1}{32}V=\frac{66}{7}$  см³, откуда  $V\approx 302$  см³.

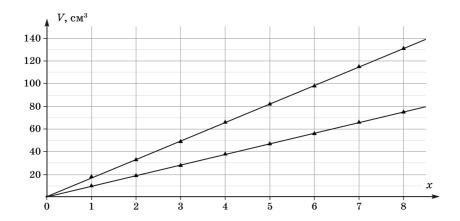
$$V = 302 \text{ cm}^3.$$

Аналогично проведем эксперимент для закрытой трубки. В зависимости от количества делений, погруженных в жидкость, l

$$V_{\text{откр}}(x) = \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4}\right) \cdot \frac{x}{32} L; V_{\text{закр}}(x) = \frac{\pi D^2}{4} \cdot \frac{x}{32} L.$$

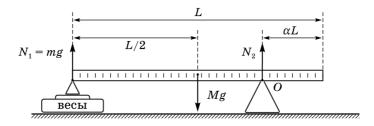
Тогда отношение угловых коэффициентов

$$\frac{k_{\text{\tiny 3AKP}}}{k_{\text{\tiny OTKP}}} = \frac{D^2}{D^2 - d^2} = \frac{\left(\frac{D}{d}\right)^2}{\left(\frac{D}{d}\right)^2 - 1} = \frac{115}{66}.$$



Окончательно получаем $\frac{D}{d} \approx 1.5$ .

 $\frac{D}{d} \approx 1,\!5.$  Собираем экспериментальную установку, предложенную в условии.



Правило моментов относительно т.O:

$$Mg\left(\frac{L}{2} - \alpha L\right) = mg\left(L - \alpha L\right).$$

Откуда  $m\left(\frac{1-2\alpha}{2(1-\alpha)}\right)=M\cdot\left(\frac{1-2\alpha}{2(1-\alpha)}\right)$  – линейная зависимость с угловым коэффициентом, равным массе трубки M.

| m, г | $\alpha$        | $\frac{1-2\alpha}{2(1-\alpha)}$ |
|------|-----------------|---------------------------------|
| 29   | $\frac{14}{32}$ | 0,11                            |
| 42   | $\frac{13}{32}$ | 0,16                            |
| 54   | $\frac{12}{32}$ | 0,20                            |
| 64   | $\frac{11}{32}$ | 0,24                            |
| 74   | $\frac{10}{32}$ | 0,27                            |
| 82   | $\frac{9}{32}$  | 0,30                            |
| 90   | $\frac{8}{32}$  | 0,33                            |
| 98   | $\frac{7}{32}$  | 0,36                            |
| 105  | $\frac{6}{32}$  | 0,39                            |
| 111  | $\frac{5}{32}$  | 0,41                            |
| 117  | $\frac{4}{32}$  | 0,43                            |
| 122  | $\frac{3}{32}$  | 0,44                            |



Из углового коэффициента наклона определяем массу трубку  $M=274~{
m r.}$   $M=274~{
m r.}$ 

Определяем плотность  $\rho=\frac{M}{V}=0.91~\frac{\Gamma}{{
m cm}^3}.$   $ho=0.91~\frac{\Gamma}{{
m cm}^3}.$